翻訳と辞書 |
Nemytskii operator : ウィキペディア英語版 | Nemytskii operator In mathematics, Nemytskii operators are a class of nonlinear operators on ''L''''p'' spaces with good continuity and boundedness properties. They take their name from the mathematician Viktor Vladimirovich Nemytskii. ==Definition==
Let Ω be a domain (an open and connected set) in ''n''-dimensional Euclidean space. A function ''f'' : Ω × R''m'' → R is said to satisfy the Carathéodory conditions if * ''f''(''x'', ''u'') is a continuous function of ''u'' for almost all ''x'' ∈ Ω; * ''f''(''x'', ''u'') is a measurable function of ''x'' for all ''u'' ∈ R''m''. Given a function ''f'' satisfying the Carathéodory conditions and a function ''u'' : Ω → R''m'', define a new function ''F''(''u'') : Ω → R by : The function ''F'' is called a Nemytskii operator.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Nemytskii operator」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|